MATRIZ EXTRACELULAR :
La matriz extracelular está formada principalmente por proteínas, glucosaminoglucanos, proteoglucanos y glucoproteínas, organizados en entramados diversos que constituyen las diferentes matrices extracelulares de los distintos tejidos. Las proteínas más abundantes son el colágeno y la elastina.
Colágeno
Se denomina colágeno a una familia de proteínas muy abundante en el organismo de los animales. En los vertebrados hay más de 40 genes que sintetizan unas cadenas de aminoácidos denominadas cadenas α, las cuales se asocian de tres en tres para formar hasta 28 tipos de moléculas de colágeno diferentes. Las moléculas de colágeno pueden representar del 25 al 30 % de todas las proteínas corporales. Tradicionalmente se ha usado el colágeno para fabricar pegamentos y colas, de ahí su nombre. Su principal misión en los tejidos es formar un armazón que hace de sostén a los tejidos y que resiste las fuerzas de tensión mecánica (ver figura =>). Actúa como las barras de acero que refuerzan el hormigón en las obras. La organización de las moléculas de colágeno en estructuras macromoleculares tridimensionales es variada. Pueden formar fibras paralelas para resistir tensiones unidireccionales, como ocurre en tendones y ligamentos, o fibras orientadas enforma de malla para soportar tensiones que pueden venir de todas las direcciones, como ocurre en el hueso, en el cartílago y en el tejido conectivo. Las células se "agarran" a las moléculas de colágeno mediante diversas proteínas de adhesión como las integrinas, inmunoglobulinas, anexinas, etcétera.
Las moléculas de colágeno se caracterizan por:
a) Una composición poco frecuente de aminoácidos. En las moléculas de colágeno abunda el aminoácido glicina, que es muy común, y otros menos comunes como la prolina e hidroxiprolina. La glicina se repite cada 3 aminoácidos (...-Gly - x - y - Gly - x - y -...), donde x e y suelen ser prolina e hidroxiprolina, respectivamente. Esta secuencia repetida de glicina es la que permite la disposición en hélice levógira de las cadenas α, debido al pequeño tamaño de este aminoácido.
Esquema de la síntesis de las fibras de colágeno.
Fibras de colágeno en la matriz extracelular del tubo digestivo. Microscopía electrónica de barrido.
Fibras de colágeno en la matriz extracelular del tubo digestivo. Microscopía electrónica de trasnmisión.
Fibras de colágeno en la matriz extracelular del tubo digestivo. Microscopía electrónica de barrido.
Fibras de colágeno en la matriz extracelular del tubo digestivo. Microscopía electrónica de trasnmisión.
b) Pueden organizarse formando fibras, mallas o especializarse en formar uniones entre moléculas. Todo ello depende de la composición química de sus subunidades α y de los tipos de subunidades que lo formen (ver tabla =>).
Forman fibras. Son los más abundantes de todas las formas de colágeno y están formadas por repeticiones de moléculas de colágeno, tres cadenas α arrolladas en forma de triple hélice dextrógira que forman las unidades repetidas. El colágeno se sintetiza en el interior celular en forma procolágeno, formado por 3 subunidades α inmaduras, que es exocitado al exterior celular. Tras la liberación sufre un tratamiento enzimático que elimina una secuencias terminales de cada cadena α, transformando el procolágeno en colágeno. Tras ello las moléculas de colágeno se ensamblan automáticamente para formar las fibrillas de colágeno, que a su vez se unen para formar las fibras de colágeno (ver figura=>). De los colágenos que forman fibras los más frecuentes son eltipo I, que abunda en huesos, cartílago y piel, y que representa el 90 % de todo el colágeno del organismo. Otros tipos abundantes son el II, presente en el cartílago hialino, y el III, que abunda en la piel y en los vasos sanguíneos.
Forman mallas. Estos tipos de colágeno suelen formar láminas de entramados moleculares. Se encuentran rodeando los órganos o formando la base de los epitelios. Entre éstos se encuentra el colágeno tipo IV que abunda en la lámina basal, localizada entre el epitelio y el tejido conectivo.
Establecen conexiones. Forman puentes de unión entre moléculas de la matriz extracelular y el colágeno fibrilar o el colágeno que forma mallas. Por ejemplo, el colágeno tipo IX forma uniones entre los glucosaminoglucanos y las fibras de colágeno tipo II.
También existen moléculas de colágeno que poseen secuencias de aminoácidos hidrofóbicos y que se encuentran como moléculas transmembrana. Es el caso del colágeno tipo XIII y el tipo XVII. El colágeno tipo XVII forma parte de la estructura de los hemidesmosomas.
Imagen obtenida con un microscopio electrónico de transmisión a partir de tejido conectivo de un invertebrado marino, la oreja de mar. Con los asteriscos negros se indica el colágeno ya ensamblado en el exterior celular, mientras que con los asteriscos blancos las grandes vesículas intracelulares llenas de moléculas de procolágeno. La flecha blanca indica un posible punto de liberación de las moléculas de procolágeno al espacio extracelular.
Elastina
Esquema de una porción de una fibra de elastina. Las moléculas de elastina están unidas entre sí mediante enlaces entre las regiones ricas en el aminoácido lisina (Modificado de Kielty 2007).
Es una proteína abundante en muchas matrices extracelulares y aparece como un componente de las denominadas fibras elásticas, las cuales son agregados insolubles de proteínas. Al contrario que las fibras de colágeno, las fibras elásticas tienen la capacidad de estirarse en respuesta a las tensiones mecánicas y de contraerse para recuperar su longitud inicial en reposo. La elasticidad de nuestros tejidos depende de las fibras elásticas. Se encuentran sobre todo en la dermis, en las paredes de las arterias, en el cartílago elástico y en el tejido conectivo de los pulmones. Además de la elastina, que representa el 90 %, las fibras elásticas están formadas por las denominadas microfibrillas de fibrilina y por otras glucoproteínas y proteoglucanos en menor proporción. Otras funciones de las fibras elásticas son aportar sostén a los tejidos o regular la actividad de los factores de crecimiento TGF-β mediado por la fibrilina.
La elastina posee una larga cadena de aminoácidos en la que hay numerosas secuencias conaminoácidos hidrófobos, separadas por otras secuencias que contienen parejas de glicinas y otros aminoácidos pequeños como la lisina. Esta composición de aminoácidos es la que confiere las propiedades elásticas, puesto que los aminoácidos hidrófobos permiten la disposición en estructuras arrolladas y la lisina la formación de α-hélices, que son los puntos donde se enlanzan dos moléculas de elastina próximas. La elastina parece ser una invención de los vertebrados, puesto que no se ha encontrado en invertebrados.